Publications


International Conference Papers

  1. Optimization of the Modified Gaussian Filter for Mobile GPU Usage in Game Workloads
    Jieui Kang, Jaehyeong Sim, Hyokyung Bahn
    International Conference on Communications, Computing, Cybersecurity, and Informatics (CCCI), 2023 [DOI]
  2. TD-NAAS: Template-Based Differentiable Neural Architecture Accelerator Search
    HaYoung Lim, Yeseo Jang, Juyeon Kim, Jaehyeong Sim
    20th International SoC Conference (ISOCC), 2023 [DOI]
  3. A 47.4uJ/Epoch Trainable Deep Convolutional Neural Network Accelerator for In-Situ Personalization on Smart Devices
    Seungkyu Choi, Jaehyeong Sim, Myeonggu Kang, Yeongjae Choi, Hyeonuk Kim, Lee-Sup Kim
    IEEE Asian Solid-State Circuits Conference (A-SSCC), 2019 [DOI]
  4. eSRCNN: A Framework for Optimizing Super-Resolution Tasks on Diverse Embedded CNN Accelerators
    Youngbeom Jung, Yeongjae Choi, Jaehyeong Sim, Lee-Sup Kim
    IEEE/ACM International Conference on Computer Aided Design (ICCAD), 2019 [DOI] (acceptance rate: 23.9%, Top-Tier)
  5. A PVT-robust Customized 4T Embedded DRAM Cell Array for Accelerating Binary Neural Networks
    Hyein Shin, Jaehyeong Sim, Daewoong Lee, Lee-Sup Kim
    IEEE/ACM International Conference on Computer Aided Design (ICCAD), 2019 [DOI] (acceptance rate: 23.9%, Top-Tier)
  6. An Energy-efficient Processing-in-Memory Architecture for Long Short Term Memory in a Spin Orbit Torque MRAM
    Kyeonghan Kim, Hyein Shin, Jaehyeong Sim, Myeonggu Kang, Lee-Sup Kim
    IEEE/ACM International Conference on Computer Aided Design (ICCAD), 2019 [DOI] (acceptance rate: 23.9%, Top-Tier)
  7. NAND-Net: Minimizing Computational Complexity of In-Memory Processing for Binary Neural Networks
    Hyeonuk Kim, Jaehyeong Sim, Yeongjae Choi, Lee-Sup Kim
    IEEE International Symposium on High-Performance Computer Architecture (HPCA), 2019 [DOI] (acceptance rate: 19.7%, Top-Tier)
  8. NID: Processing Binary Convolutional Neural Network in Commodity DRAM
    Jaehyeong Sim, Hoseok Seol, Lee-Sup Kim
    IEEE/ACM International Conference on Computer Aided Design (ICCAD), 2018 [DOI] (acceptance rate: 24.5%, Top-Tier)
  9. TrainWare: A Memory Optimized Weight Update Architecture for On-Device Convolutional Neural Network Training
    Seungkyu Choi, Jaehyeong Sim, Myeonggu Kang, Lee-Sup Kim
    ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED), 2018 [DOI]
  10. A Kernel Decomposition Architecture for Binary-weight Convolutional Neural Networks
    Hyeonuk Kim, Jaehyeong Sim, Yeongjae Choi, Lee-Sup Kim
    ACM/IEEE Design Automation Conference (DAC), 2017 [DOI] (acceptance rate: 24.3%, Top-Tier)
  11. SENIN: An Energy-Efficient Sparse Neuromorphic System
    Myunghoon Choi, Seungkyu Choi, Jaehyeong Sim, Lee-Sup Kim
    ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED), 2017  [DOI]
  12. A 1.42TOPS/W Deep Convolutional Neural Network Recognition Processor for Intelligent IoE Systems
    Jaehyeong Sim, Jun-Seok Park, Minhye Kim, Dongmyung Bae, Yeongjae Choi, Lee-Sup Kim
    IEEE International Solid-State Circuit Conference (ISSCC), 2016  [DOI] (Top-Tier)
  13. Timing Error Masking by Exploiting Operand Value Locality in SIMD Architecture (Best Paper Award)
    Jaehyeong Sim, Jun-Seok Park, Seungwook Paek, Lee-Sup Kim
    IEEE International Conference on Computer Design (ICCD), 2014  [DOI]
  14. PowerField: A Transient Temperature-to-Power Technique based on Markov Random Field Theory
    Seungwook Paek, Seok-Hwan Moon, Wongyu Shin, Jaehyeong Sim, Lee-Sup Kim
    ACM/IEEE Design Automation Conference (DAC), 2012  [DOI] (acceptance rate: 22.1%, Top-Tier)

International Journal Papers

  1. Q-LAtte: An Efficient and Versatile LSTM Model for Quantized Attention-Based Time Series Forecasting in Building Energy Applications
    Jieui Kang, Jihye Park, Soeun Choi, Jaehyeong Sim
    IEEE Access, May 2024 [DOI]
  2. S-FLASH: A NAND Flash-based Deep Neural Network Accelerator Exploiting Bit-level Sparsity
    Myeonggu Kang, Hyeonuk Kim, Hyein Shin, Jaehyeong Sim, Kyeonghan Kim, Lee-Sup Kim
    IEEE Transactions on Computers, Jun. 2022 [DOI]
  3. CREMON: Cryptography Embedded on the Convolutional Neural Network Accelerator
    Yeongjae Choi, Jaehyeong Sim, Lee-Sup Kim
    IEEE Transactions on Circuits and Systems II, Dec. 2020 [DOI]
  4. An Energy-Efficient Deep Convolutional Neural Network Training Accelerator for In-Situ Personalization on Smart Devices
    Seungkyu Choi, Jaehyeong Sim, Myeonggu Kang, Yeongjae Choi, Hyeonuk Kim, Lee-Sup Kim
    IEEE Journal of Solid-State Circuits, Oct. 2020 [DOI]
  5. An Energy-Efficient Deep Convolutional Neural Network Inference Processor with Enhanced Output Stationary Dataflow in 65-nm CMOS
    Jaehyeong Sim, Somin Lee, Lee-Sup Kim
    IEEE Transactions on Very Large Scale Integration Systems, Jan. 2020 [DOI]
  6. Energy-efficient Design of Processing Element for Convolutional Neural Network
    Yeongjae Choi, Dongmyung Bae, Jaehyeong Sim, Seungkyu Choi, Minhye Kim, Lee-Sup Kim
    IEEE Transactions on Circuits and Systems II, Nov. 2017  [DOI]
  7. A 5 Gb/s 2.67 mW/Gb/s Digital Clock and Data Recovery with Hybrid Dithering Using a Time-Dithered Delta-Sigma Modulator
    Taeho Lee, Yong-Hun Kim, Jaehyeong Sim, Jun-Seok Park, Lee-Sup Kim
    IEEE Transactions on Very Large Scale Integration Systems, Apr. 2016  [DOI]
  8. PowerField: A Probabilistic Approach for Temperature-to-Power Conversion based on Markov Random Field Theory
    Seungwook Paek, Wongyu Shin, Jaehyeong Sim, Lee-Sup Kim
    IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Oct. 2013  [DOI]

Domestic Papers

  1. ToMato: Token Merging을 이용한 Vision Transformer 가속화 (학부생 논문경진대회 장려상)
    권수영, 권민서, 김효진, 심재형
    대한전자공학회 추계학술대회, 2023 [DBpia]
  2. QTNAAS: 템플릿 기반 양자화된 신경망 구조 및 가속기 탐색 프레임워크
    임하영, 김경미, 장예서, 김주연, 심재형
    대한전자공학회 추계학술대회, 2023 [DBpia]
  3. 게임 워크로드에 최적화된 모바일 GPU 설계방안 연구
    강지의, 심재형, 반효경
    한국소프트웨어종합학술대회, 2022 [DBpia]
  4. 딥러닝 기반의 MBTI 성격유형 분류 연구
    김정민, 박지민, 이로운, 조서원, 심재형
    한국통신학회 학술대회논문집, 2022 [DBpia]

International Patents

  1. APPARATUS AND METHOD OF PROCESSING QUANTIZATION ARTIFICIAL INTELLIGENCE LEARNING USING LOSS FUNCTION AND DISTRIBUTION INFORMATION AND A METHOD THEREOF, PCT/KR2024/006433
  2. APPARATUS FOR SEARCHING NEURAL ARCHITECTURE BASED ON TEMPLATE AND METHOD THEREOF, PCT/KR2024/005651
  3. APPARATUS AND METHOD FOR SEARCHING SQUASH FUNCTION IN CAPSULE NETWORK, PCT/KR2024/003896
  4. METHOD AND APPARATUS WITH DEEP LEARNING OPERATIONS, US20220164164, Patent Published.
  5. COMPUTING DEVICE AND METHOD, US20220083390, Patent Published.
  6. ACCELERATOR, METHOD OF OPERATING AN ACCELERATOR, AND ELECTRONIC DEVICE INCLUDING AN ACCELERATOR, US11741026B2, Patent Granted.
  7. Neural network method and apparatus, US10699160B2, Patent Granted.

Domestic Patents

  1. 토큰 병합을 이용한 비전 트랜스포머 장치 및 방법, 1020240065166, 특허 출원
  2. 인공지능 기반의 스마트 윈도우 제어 시스템 및 제어 방법, 1020240057005, 특허출원
  3. 최적화된 클래스 가중치를 이용한 인공지능 학습 처리 장치 및 방법, 1020240031351, 특허 출원
  4. 가우시안 플러스 필터에 기반하는 이미지 처리장치 및 그 방법, 1020230157656, 특허 출원
  5. 캡슐 네트워크의 스쿼시 함수 탐색장치 및 그 방법, 1020230121855, 특허 출원
  6. 정확도 정보 및 유사도 정보를 이용한 양자화 인공지능 학습 처리 장치 및 방법, 1020230194206, 특허 출원
  7. 템플릿에 기반하는 신경 구조 탐색장치 및 그 방법, 1020230178909, 특허 출원
  8. 프로세싱 장치, 컴퓨팅 장치, 및 프로세싱 장치의 동작 방법, 1020200117000, 특허 출원 (공개)
  9. 가속기, 가속기의 동작 방법 및 이를 포함한 전자 장치, 1020200110530, 특허 출원 (공개)
  10. 뉴럴 네트워크의 컨볼루션 연산을 수행하는 방법 및 장치, 1024529510000, 특허 등록