NPU and Domain-Specific Hardware
Designing Neural Processing Unit (NPU) and domain-specific processors (신경처리장치 및 도메인 특화 프로세서 설계)
Research Description
We design a high-performance, energy-efficient Neural Processing Unit (NPU), a new type of processor dedicated for a wide range of AI workloads. It generally exploits the high degree of parallelism inherent in deep learning algorithms. We are also looking for an opportunity to design domain-specific processors for latest state-of-the-art algorithms.
저희는 다양한 AI 작업에 특화된 고성능, 에너지 효율적인 신경처리장치 (NPU)를 설계합니다. 이 프로세서는 딥러닝 알고리즘에 내재된 높은 수준의 병렬성을 활용합니다. 또한 최신 최첨단 알고리즘을 위한 도메인 특화 프로세서 설계 기회도 모색하고 있습니다.
Your Job
- Don’t worry! We don’t fabricate a real silicon (Area of EE, not CS).
- Understanding basic computer architecture and digital logics.
- Evaluating existing NPUs and improving them.
- Designing a novel microarchitecture for NPUs or domain-specific processors.
-
Studying a software stack (compilers, firmwares, device drivers) for accelerators.
- 실제 칩을 제작하지는 않습니다 (전기공학 분야, 컴퓨터공학 아님).
- 기본적인 컴퓨터 아키텍처와 디지털 논리 이해.
- 기존 NPU를 평가하고 개선하기.
- NPU 또는 도메인 특화 프로세서를 위한 새로운 마이크로아키텍처 설계.
- 가속기를 위한 소프트웨어 스택 (컴파일러, 펌웨어, 디바이스 드라이버) 연구.
Related Papers:
-
An Energy-Efficient Hardware Accelerator for On-Device Inference of YOLOXIn 2024 21st International SoC Design Conference (ISOCC)
-
BS2: Bit-Serial Architecture Exploiting Weight Bit Sparsity for Efficient Deep Learning AccelerationIn 2024 21st International SoC Design Conference (ISOCC)
-
SCIECREMON: Cryptography Embedded on the Convolutional Neural Network AcceleratorIEEE Transactions on Circuits and Systems II: Express Briefs, vol.67, num.12, pp.3337–3341, 2020
-
SCIEAn Energy-Efficient Deep Convolutional Neural Network Training Accelerator for In Situ Personalization on Smart DevicesIEEE Journal of Solid-State Circuits, vol.55, num.10, pp.2691–2702, 2020
-
MajorA 47.4 uJ/epoch Trainable Deep Convolutional Neural Network Accelerator for In-Situ Personalization on Smart DevicesIn 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC)
-
SCIEAn Energy-Efficient Deep Convolutional Neural Network Inference Processor with Enhanced Output Stationary Dataflow in 65-nm CMOSIEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol.28, num.1, pp.87–100, 2019
-
MajorTrainWare: A Memory Optimized Weight Update Architecture for On-Device Convolutional Neural Network TrainingIn 2018 ACM/IEEE International Symposium on Low Power Electronics and Design (ISLPED)
-
SCIEEnergy-Efficient Design of Processing Element for Convolutional Neural NetworkIEEE Transactions on Circuits and Systems II: Express Briefs, vol.64, num.11, pp.1332–1336, 2017
-
Top-TierA Kernel Decomposition Architecture for Binary-Weight Convolutional Neural NetworksIn 2017 IEEE/ACM 54th Annual Design Automation Conference (DAC)
-
Top-TierA 1.42 TOPS/W Deep Convolutional Neural Network Recognition Processor for Intelligent IoE SystemsIn 2016 IEEE International Solid-State Circuits Conference (ISSCC)